If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-54=0
a = 18; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·18·(-54)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*18}=\frac{0-36\sqrt{3}}{36} =-\frac{36\sqrt{3}}{36} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*18}=\frac{0+36\sqrt{3}}{36} =\frac{36\sqrt{3}}{36} =\sqrt{3} $
| 58=7/g+57 | | m/3+37=51 | | 71=c/11+65 | | 34+2z=64 | | 78=46+8q | | 52=50+q/10 | | 5x-12=2x-27 | | 43+48/t=91 | | 10c-92=48 | | 2p-85=9 | | 15=14+6/s | | 15=14+6.s | | 6-2x/3=5x-1/4 | | 95=85+5q | | 9r-91=89 | | j/10+39=47 | | 44=32+72/j | | 5p3=4/3(p1) | | 41+8r=89 | | 42/s+22=29 | | 14g+19=47 | | 2x²+11x+14=0 | | x/2=x+6/3 | | 8=v/25/6 | | (3/x+1)-(4/5)=(1/x+1)-6 | | -3x+5=8x+15 | | 3/(3/x+1)-(4/5)=(1/x+1)-6 | | (X+10)°=(2x-15)° | | 12/2x=30 | | 8(j-4)=2(4j-26) | | 8(j-4)=2(4j-26 | | 0=16x^2+256x-624 |